A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Forecasting Bitcoin Trends Using Algorithmic Learning Systems
2020
Entropy
This research has examined the ability of two forecasting methods to forecast Bitcoin's price trends. The research is based on Bitcoin—USA dollar prices from the beginning of 2012 until the end of March 2020. Such a long period of time that includes volatile periods with strong up and downtrends introduces challenges to any forecasting system. We use particle swarm optimization to find the best forecasting combinations of setups. Results show that Bitcoin's price changes do not follow the
doi:10.3390/e22080838
pmid:33286608
fatcat:4mmynrcmh5er7nmzzgucvj7h2u