Unsupervised Language Acquisition: Theory and Practice [article]

Alexander Clark
2002 arXiv   pre-print
In this thesis I present various algorithms for the unsupervised machine learning of aspects of natural languages using a variety of statistical models. The scientific object of the work is to examine the validity of the so-called Argument from the Poverty of the Stimulus advanced in favour of the proposition that humans have language-specific innate knowledge. I start by examining an a priori argument based on Gold's theorem, that purports to prove that natural languages cannot be learned, and
more » ... some formal issues related to the choice of statistical grammars rather than symbolic grammars. I present three novel algorithms for learning various parts of natural languages: first, an algorithm for the induction of syntactic categories from unlabelled text using distributional information, that can deal with ambiguous and rare words; secondly, a set of algorithms for learning morphological processes in a variety of languages, including languages such as Arabic with non-concatenative morphology; thirdly an algorithm for the unsupervised induction of a context-free grammar from tagged text. I carefully examine the interaction between the various components, and show how these algorithms can form the basis for a empiricist model of language acquisition. I therefore conclude that the Argument from the Poverty of the Stimulus is unsupported by the evidence.
arXiv:cs/0212024v1 fatcat:lsrnihurufcrrk76ygfmlpk4cu