A Brief Survey on Breast Cancer Diagnostic with Deep Learning Schemes Using Multi-Image Modalities

Tariq Mahmood, Jianqiang Li, Yan Pei, Faheem Akhtar, Azhar Imran, Khalil ur Rehman
2020 IEEE Access  
Patients with breast cancer are prone to serious health-related complications with higher mortality. The primary reason might be a misinterpretation of radiologists in recognizing suspicious lesions due to technical issues in imaging qualities and heterogeneous breast densities which increases the false-(positive and negative) ratio. Early intervention is significant in establishing an up-to-date prognosis process which can successfully mitigate complications of disease with higher recovery.
more » ... manual screening of breast abnormalities through traditional machine learning schemes misinterpret the inconsistent featureextraction process which poses a problem, i.e., patients being called-back for biopsies to eliminates the suspicions. However, several deep learning-based methods have been developed for reliable breast cancer prognosis and classification but very few of them provided a comprehensive overview of lesions segmentation. This research focusses on providing benefits and risks of breast multi-imaging modalities, segmentation schemes, feature extraction, classification of breast abnormalities through state-of-the-art deep learning approaches. This research also explores various well-known databases using "Breast Cancer" keyword to present a comprehensive survey on existing diagnostic schemes to open-up new research challenges for radiologists and researchers to intervene as early as possible to develop an efficient and reliable breast cancer prognosis system using prominent deep learning schemes.
doi:10.1109/access.2020.3021343 fatcat:czvctyngmjg6bhzinpmrfmht64