Task-Level Re-Execution Framework for Improving Fault Tolerance on Symmetry Multiprocessors

Hyeongboo Baek, Jaewoo Lee
2019 Symmetry  
Hard real-time systems are employed in military, aeronautics, and astronautics fields where deployed systems are susceptible to software faults that can result in functional errors. Thus, there is a need to use fault-tolerant (FT) real-time scheduling. Among the various fault-tolerant real-time scheduling techniques, re-execution has been applied widely to existing real-time systems owing to its simplicity and applicability. However, re-execution requires multiple executions of every task, and
more » ... ome tasks miss their deadlines owing to the prolonged execution time; therefore, it has been found to be suitable for only soft real-time systems. In this paper, we propose an FT policy that can be incorporated into most (if not all) existing real-time scheduling algorithms on multiprocessor systems, which improves the reliability of the target system without a tradeoff against schedulability. As a case study, we apply the FT policy to existing fixed-priority scheduling and earliest deadline zero-laxity scheduling, and we demonstrate that it enhances reliability without schedulability loss.
doi:10.3390/sym11050651 fatcat:5g5g3qml2bf25nhf5mvpcv5mwe