Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network

M. Ghiassi, J. Skinner, D. Zimbra
2013 Expert systems with applications  
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex
more » ... rm) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t Twitter messages are increasingly used to determine consumer sentiment towards a brand. The existing literature on Twitter sentiment analysis uses various feature sets and methods, many of which are adapted from more traditional text classification problems. In this research, we introduce an approach to supervised feature reduction using n-grams and statistical analysis to develop a Twitter-specific lexicon for sentiment analysis. We augment this reduced Twitter-specific lexicon with brand-specific terms for brand-related tweets. We show that the reduced lexicon set, while significantly smaller (only 187 features), reduces modeling complexity, maintains a high degree of coverage over our Twitter corpus, and yields improved sentiment classification accuracy. To demonstrate the effectiveness of the devised Twitter-specific lexicon compared to a traditional sentiment lexicon, we develop comparable sentiment classification models using SVM. We show that the Twitter-specific lexicon is significantly more effective in terms of classification recall and accuracy metrics. We then develop sentiment classification models using the Twitter-specific lexicon and the DAN2 machine learning approach, which has demonstrated success in other text classification problems. We show that DAN2 produces more accurate sentiment classification results than SVM while using the same Twitter-specific lexicon.
doi:10.1016/j.eswa.2013.05.057 fatcat:wjodhhyps5givfbpmbr6e6bwca