HIV-1 Tat Interaction with RNA Polymerase II C-terminal Domain (CTD) and a Dynamic Association with CDK2 Induce CTD Phosphorylation and Transcription from HIV-1 Promoter

Longwen Deng, Tatyana Ammosova, Anne Pumfery, Fatah Kashanchi, Sergei Nekhai
2002 Journal of Biological Chemistry  
Human immunodeficiency virus, type 1 (HIV-1), Tat protein activates viral gene expression through promoting transcriptional elongation by RNA polymerase II (RNAPII). In this process Tat enhances phosphorylation of the C-terminal domain (CTD) of RNAPII by activating cell cycle-dependent kinases (CDKs) associated with general transcription factors of the promoter complex, specifically CDK7 and CDK9. We reported a Tat-associated T-cell-derived kinase, which contained CDK2. Here, we provide further
more » ... we provide further evidence that CDK2 is involved in Tat-mediated CTD phosphorylation and in HIV-1 transcription in vitro. Tat-mediated CTD phosphorylation by CDK2 required cysteine 22 in the activation domain of Tat and amino acids 42-72 of Tat. CDK2 phosphorylated Tat itself, apparently by forming dynamic contacts with amino acids 15-24 and 36 -49 of Tat. Also, amino acids 24 -36 and 45-72 of Tat interacted with CTD. CDK2 associated with RNAPII and was found in elongation complexes assembled on HIV-1 long-terminal repeat template. Recombinant CDK2/cyclin E stimulated Tat-dependent HIV-1 transcription in reconstituted transcription assay. Immunodepletion of CDK2/ cyclin E in HeLa nuclear extract blocked Tat-dependent transcription. We suggest that CDK2 is part of a transcription complex that is required for Tat-dependent transcription and that interaction of Tat with CTD and a dynamic association of Tat with CDK2/cyclin E stimulated CTD phosphorylation by CDK2.
doi:10.1074/jbc.m111349200 pmid:12114499 fatcat:p3mvy6etengprnge3jfvrweo7a