Similarité entre l'algèbre de Volterra et un quotient d'algèbre uniforme

Konin Koua
1991 Proceedings of the Edinburgh Mathematical Society  
Two commutative Banach algebras A and B are said to be similar if there exists a Banach algebra D such that [xD]"=fl for some x in D, and two one-to-one continuous homomorphisms B such that (j>{D) is a dense ideal of A and . Preuve. II suffit de verifier l'inegalite du produit. Pour d = yu et d' = yu' on a q(dd') = q(y 2 uu') = \\yuu'\\ g||y|| | car IMI^l; done q(dd')^q{d)q{d'); d,d'e3>.
doi:10.1017/s0013091500005162 fatcat:4lciwoqa35antniov4y7u43fyu