Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species

Dezhi Wang, Bo Wan, Penghua Qiu, Yanjun Su, Qinghua Guo, Run Wang, Fei Sun, Xincai Wu
2018 Remote Sensing  
Mapping mangrove extent and species is important for understanding their response to environmental changes and for observing their integrity for providing goods and services. However, accurately mapping mangrove extent and species are ongoing challenges in remote sensing. The newly-launched and freely-available Sentinel-2 (S2) sensor offers a new opportunity for these challenges. This study presents the first study dedicated to the examination of the potential of original bands, spectral
more » ... , and texture information of S2 in mapping mangrove extent and species in the first National Nature Reserve for mangroves in Dongzhaigang, China. To map mangrove extent and species, a three-level hierarchical structure based on the spatial structure of a mangrove ecosystem and geographic object-based image analysis is utilized and modified. During the experiments, to conquer the challenge of optimizing high-dimension and correlated feature space, the recursive feature elimination (RFE) algorithm is introduced. Finally, the selected features from RFE are employed in mangrove species discriminations, based on a random forest algorithm. The results are compared with those of Landsat 8 (L8) and Pléiades-1 (P1) data and show that S2 and L8 could accurately extract mangrove extent, but P1 obviously overestimated it. Regarding mangrove species community levels, the overall classification accuracy of S2 is 70.95%, which is lower than P1 imagery (78.57%) and slightly higher than L8 data (68.57%). Meanwhile, the former difference is statistically significant, and the latter is not. The dominant species is extracted basically in S2 and P1 imagery, but for the occasionally distributed K. candel and the pioneer and fringe mangrove A. marina, S2 performs poorly. Concerning L8, S2, and P1, there are eight (8/126), nine (9/218), and eight (8/73) features, respectively, that are the most important for mangrove species discriminations. The most important feature overall is the red-edge bands, followed by shortwave infrared, near infrared, blue, and other visible bands in turn. This study demonstrates that the S2 sensor can accurately map mangrove extent and basically discriminate mangrove species communities, but for the latter, one should be cautious due to the complexity of mangrove species.
doi:10.3390/rs10091468 fatcat:6gwp7v5iena2hdfhjki44cfr4e