Convex and Scalable Weakly Labeled SVMs [article]

Yu-Feng Li, Ivor W. Tsang, James T. Kwok, Zhi-Hua Zhou
2013 arXiv   pre-print
In this paper, we study the problem of learning from weakly labeled data, where labels of the training examples are incomplete. This includes, for example, (i) semi-supervised learning where labels are partially known; (ii) multi-instance learning where labels are implicitly known; and (iii) clustering where labels are completely unknown. Unlike supervised learning, learning with weak labels involves a difficult Mixed-Integer Programming (MIP) problem. Therefore, it can suffer from poor
more » ... ity and may also get stuck in local minimum. In this paper, we focus on SVMs and propose the WellSVM via a novel label generation strategy. This leads to a convex relaxation of the original MIP, which is at least as tight as existing convex Semi-Definite Programming (SDP) relaxations. Moreover, the WellSVM can be solved via a sequence of SVM subproblems that are much more scalable than previous convex SDP relaxations. Experiments on three weakly labeled learning tasks, namely, (i) semi-supervised learning; (ii) multi-instance learning for locating regions of interest in content-based information retrieval; and (iii) clustering, clearly demonstrate improved performance, and WellSVM is also readily applicable on large data sets.
arXiv:1303.1271v5 fatcat:3xqbttwx5rffjmifidls5tapfi