Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign

Alexander Myagkov, Patric Seifert, Ulla Wandinger, Johannes Bühl, Ronny Engelmann
2016 Atmospheric Measurement Techniques  
<p><strong>Abstract.</strong> This paper presents first quantitative estimations of apparent ice particle shape at the top of liquid-topped clouds. Analyzed ice particles were formed under mixed-phase conditions in the presence of supercooled water and in the temperature range from −20 to −3<span class="thinspace"></span>°C. The estimation is based on polarizability ratios of ice particles measured by a Ka-band cloud radar MIRA-35 with hybrid polarimetric configuration. Polarizability ratio is
more » ... izability ratio is a function of the geometrical axis ratio and the dielectric properties of the observed hydrometeors. For this study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with the cloud-top temperatures of ∼ −5, ∼ −8, ∼ −15, and ∼ −20<span class="thinspace"></span>°C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected apparent shapes with well-known shape–temperature dependencies observed in laboratories was found. Polarizability ratios used for the analysis were estimated for areas located close to the cloud top, where aggregation and riming processes do not strongly affect ice particles. We concluded that, in microwave scattering models, ice particles detected in these areas can be assumed to have pristine shapes. It was also found that even slight variations of ambient conditions at the cloud top with temperatures warmer than ∼ −5<span class="thinspace"></span>°C can lead to rapid changes of ice crystal shape.</p>
doi:10.5194/amt-9-3739-2016 fatcat:ozq7z5wsbbf4zp2no4lykczojy