I Made Ardana, Yohannes Sardjono
2017 Tri Dasa Mega  
This article involves two main objectives of BNCT system. The first goal includes optimization of 30 MeV Cyclotron-based Boron Neutron Capture Therapy (BNCT) beam shaping assembly. The second goal is to calculate the neutron flux and dosimetry system of BNCT in the head and neck soft tissue sarcoma. A series of simulations has been carried out using a Monte Carlo N Particle X program to find out the final composition and configuration of a beam shaping assembly design to moderate the fast
more » ... rate the fast neutron flux, which is generated from the thick beryllium target. The final configuration of the beam shaping assembly design includes a 39 cm aluminum moderator, 8.2 cm of lithium fluoride as a fast neutron filter and a 0.5 cm boron carbide as a thermal neutron filter. Bismuth, lead fluoride, and lead were chosen as the aperture, reflector, and gamma shielding, respectively. Epithermal neutron fluxes in the suggested design were 2.83 x 109 n/s cm-2, while other IAEA parameters for BNCT beam shaping assembly design have been satisfied. In the next step, its dosimetry for head and neck soft tissue sarcoma is simulated by varying the concentration of boron compounds in ORNL neck phantom model to obtain the optimal dosimetry results. MCNPX calculation showed that the optimal depth for thermal neutrons was 4.8 cm in tissue phantom with the maximum dose rate found in the GTV on each boron concentration variation. The irradiation time needed for this therapy were less than an hour for each level of boron concentration.Keywords: Optimization, Beam Shaping Assembly, BNCT, Dosimetry, 30 MeV Cyclotron, MCNPX. OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL). Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya dapat mematikan jaringan kanker, membutukan waktu iradiasi neutron kurang dari satu jam.Kata kunci: Optimasi, Kolimator, BNCT, Dosimetri, Siklotron 30 MeV, MCNPX
doi:10.17146/tdm.2017.19.3.3582 fatcat:kkppyl3bu5gafmyiyegy2g3vhu