A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
FORECASTING THE WORKLOAD WITH A HYBRID MODEL TO REDUCE THE INEFFICIENCY COST
2017
Time series forecasting and modeling are challenging problems during the past decades, because of its plenty of properties and underlying correlated relationships. As a result, researchers proposed a lot of models to deal with the time series. However, the proposed models such as Autoregressive integrated moving average (ARIMA) and artificial neural networks (ANNs) only describe part of the properties of time series. In this thesis, we introduce a new hybrid model integrated filter structure to
doi:10.13023/etd.2017.201
fatcat:cn5qg7ilg5gj3j6gc45jsmoimy