Sensitivity pattern of Salmonella serotypes in Northern India

Vikas Gautam, Naveen Kumar Gupta, Uma Chaudhary, D. R. Arora
2002 Brazilian Journal of Infectious Diseases  
Background. Enteric fever continues to be a major public health problem, especially in the developing countries of the tropics. We determined the incidence of Salmonella bloodstream infections and their antimicrobial resistance patterns from May to August in the years 1997-2001 in Haryana, a large state of India. The minimum inhibitory concentration (MIC) was also determined for 60 isolates of S. typhi to various commonly used antimicrobial agents. Material and Methods. Blood cultures of 6,956
more » ... cultures of 6,956 patients (PUO/septicemia) were processed by standard procedures and the Salmonella spp. isolates were identified with specific antisera and with standard biochemical tests. Antimicrobial susceptibilities were determined by Stokes disc diffusion method. The MIC of 60 randomly isolated strains of S. typhi was determined by agar dilution method using Mueller Hinton Agar medium. Results. Isolation rates of Salmonella spp. increased in 2000 and 2001. Multidrug resistance (MDR) in S. typhi had increased while in S. paratyphi it had decreased markedly. Ninety per cent chloramphenicol sensitivity was seen in S. typhi by MIC method. There was a decrease in the susceptibility to ciprofloxacin of S. typhi with MIC showing an upward trend. All S. typhi tested were sensitive to third generation cephalosporins and aminoglycosides with MIC well below the breakpoint. Discussion. Our study indicates that MDR in S. typhi is on the rise in our area. There is also re-emergence of chloramphenicol sensitivity. Rising MIC values of ciprofloxacin may lead to prolonged treatment, delayed recovery or pose treatment failure. Thus, sensitivity pattern of causative organism must be sought before instituting appropriate therapy to prevent further emergence of drug resistance.
doi:10.1590/s1413-86702002000600003 pmid:12585971 fatcat:3kt6tmghtbaazbztoqivkueknq