Effects of Lactic Acid Bacteria Fermentation on Physicochemical Properties, Functional Compounds and Antioxidant Activity of Edible Grass

Xianxiu Li, Tao He, Jianwei Mao, Ruyi Sha
2022 Fermentation  
Fermented foods are known worldwide for their functional health properties. In order to promote the relative product development of edible grass, Lactobacillus plantarum (Lp) and Lactobacillus rhamnosus (Lr) were used to ferment edible grass in this study. Effects of fermentation using Lp and Lr in monoculture and binary mixture on physicochemical properties, the contents of functional compounds and the antioxidant activity of edible grass at different fermentation times were investigated by
more » ... orimetric method and high-performance liquid chromatography (HPLC). Results show that the pH value and total sugar content of the three fermented edible grasses at the 4th day were lower than those of unfermented water extract (defined as the control sample) and kept almost unchanged at the 7th day. The total polyphenol content and total flavonoid content of the three fermented edible grasses were lower than those of the control sample by the oxidation of phenolic compounds caused by polyphenol oxidases. The highest soluble protein content and superoxide dismutase (SOD) activity were found in the binary mixture of Lp and Lr fermentation at the 7th day, which were respectively 11 and 1.78 times higher than those of control sample. The oxalic acid content of all fermented edible grasses shows a significant decrease with increasing fermentation time, especially for the binary mixture at the 7th day, reaching only 24% of the control sample. However, the contents of lactic acid and succinic acid of the three fermented edible grasses were higher than those of the control sample because of the metabolism of the microorganism. Functional compounds including soluble protein, SOD, lactic acid and succinic acid played the main positive roles in antioxidation, while oxalic acid had a negative correlation with antioxidation. Therefore, the antioxidant activity of edible grass was dramatically enhanced by Lactobacillus strain fermentation.
doi:10.3390/fermentation8110647 fatcat:tifuxgalorcl3aqda5o2jjqiga