Spin-up time research on the weather research and forecasting model for atmospheric delay mitigations of electromagnetic waves

Franz-Georg Ulmer, Ulrich Balss
2016 Journal of Applied Remote Sensing  
Atmosphere causes distortions in the geometry and phases of synthetic aperture radar images denoted by the atmospheric phase screen (APS). Numerical weather models are beneficial in correcting these disturbances. After initialization, the models need time to derive a physical valid state. This is called the spin-up time, and it affects delay predictions. The positive impact of a 12-h spin-up time on delay mitigation has not yet been reported and is the objective of this paper. Hence, four
more » ... ndent experiments are considered, revealing the best accuracy in the case of 12-h predictions and showing the best consistency of spatial frequencies. First, global positioning system zenith path delay (ZPD) series are compared with model-predicted ZPD series, which reports a 28% reduction of the root mean squared error. Second, the absolute ranging technique as an application of the delay prediction reports a 21% standard deviation decrease of position estimates. Third, a comparison of spatial frequencies between APS predictions and interferograms shows a closer consistency using a 12-h rather than a 6-h spin-up time. Fourth, APS mitigation in interferograms as an application of APS prediction is twice as good with respect to the 12-h spin-up time as with the 6-h spin-up time. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
doi:10.1117/1.jrs.10.016027 fatcat:5ig7nu6iabd4bcpv55uxqszirm