3D shape instantiation for intra-operative navigation from a single 2D projection

Xiaoyun Zhou, Guang-Zhong Yang, Su-Lin Lee, Engineering And Physical Sciences Research Council
2020
Unlike traditional open surgery where surgeons can see the operation area clearly, in robot-assisted Minimally Invasive Surgery (MIS), a surgeon's view of the region of interest is usually limited. Currently, 2D images from fluoroscopy, Magnetic Resonance Imaging (MRI), endoscopy or ultrasound are used for intra-operative guidance as real-time 3D volumetric acquisition is not always possible due to the acquisition speed or exposure constraints. 3D reconstruction, however, is key to navigation
more » ... complex in vivo geometries and can help resolve this issue. Novel 3D shape instantiation schemes are developed in this thesis, which can reconstruct the high-resolution 3D shape of a target from limited 2D views, especially a single 2D projection or slice. To achieve a complete and automatic 3D shape instantiation pipeline, segmentation schemes based on deep learning are also investigated. These include normalization schemes for training U-Nets and network architecture design of Atrous Convolutional Neural Networks (ACNNs). For U-Net normalization, four popular normalization methods are reviewed, then Instance-Layer Normalization (ILN) is proposed. It uses a sigmoid function to linearly weight the feature map after instance normalization and layer normalization, and cascades group normalization after the weighted feature map. Detailed validation results potentially demonstrate the practical advantages of the proposed ILN for effective and robust segmentation of different anatomies. For network architecture design in training Deep Convolutional Neural Networks (DCNNs), the newly proposed ACNN is compared to traditional U-Net where max-pooling and deconvolutional layers are essential. Only convolutional layers are used in the proposed ACNN with different atrous rates and it has been shown that the method is able to provide a fully-covered receptive field with a minimum number of atrous convolutional layers. ACNN enhances the robustness and generalizability of the analysis scheme by cascading multiple atrous blocks. Validati [...]
doi:10.25560/80269 fatcat:ffbmi5hkljaxxnqdq5r6nm34d4