Global attractors for Cahn–Hilliard equations with nonconstant mobility

Giulio Schimperna
2007 Nonlinearity  
We address, in a three-dimensional spatial setting, both the viscous and the standard Cahn-Hilliard equation with a nonconstant mobility coefficient. As it was shown in J.W. Barrett and J.W. Blowey, Math. Comp., 68 (1999), 487-517, one cannot expect uniqueness of the solution to the related initial and boundary value problems. Nevertheless, referring to J. Ball's theory of generalized semiflows, we are able to prove existence of compact quasi-invariant global attractors for the associated
more » ... cal processes settled in the natural "finite energy" space. A key point in the proof is a careful use of the energy equality, combined with the derivation of a "local compactness" estimate for systems with supercritical nonlinearities, which may have an independent interest. Under growth restrictions on the configuration potential, we also show existence of a compact global attractor for the semiflow generated by the (weaker) solutions to the nonviscous equation characterized by a "finite entropy" condition.
doi:10.1088/0951-7715/20/10/006 fatcat:63lbomr4dnarleyxxixz74fzdy