A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Quantized Kernel Learning for Feature Matching
2014
Neural Information Processing Systems
Matching local visual features is a crucial problem in computer vision and its accuracy greatly depends on the choice of similarity measure. As it is generally very difficult to design by hand a similarity or a kernel perfectly adapted to the data of interest, learning it automatically with as few assumptions as possible is preferable. However, available techniques for kernel learning suffer from several limitations, such as restrictive parametrization or scalability. In this paper, we
dblp:conf/nips/QinCGG14
fatcat:dhs34s6b7vdy3g4p5oscjdohrq