SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGERY USING OBJECT-BASED MARKOV RANDOM FIELD BASED ON HIERARCHICAL SEGMENTATION TREE WITH AUXILIARY LABELS

L. He, Z. Wu, Y. Zhang, Z. Hu
2020 The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences  
Abstract. In the remote sensing imagery, spectral and texture features are always complex due to different landscapes, which leads to misclassifications in the results of semantic segmentation. The object-based Markov random field provides an effective solution to this problem. However, the state-of-the-art object-based Markov random field still needs to be improved. In this paper, an object-based Markov Random Field model based on hierarchical segmentation tree with auxiliary labels is
more » ... . A remote sensing imagery is first segmented and the object-based hierarchical segmentation tree is built based on initial segmentation objects and merging criteria. And then, the object-based Markov random field with auxiliary label fields is established on the hierarchical tree structure. A probabilistic inference is applied to solve this model by iteratively updating label field and auxiliary label fields. In the experiment, this paper utilized a Worldview-3 image to evaluate the performance, and the results show the validity and the accuracy of the presented semantic segmentation approach.
doi:10.5194/isprs-archives-xliii-b3-2020-75-2020 fatcat:tuw4tjpbpfbnrny2jrikbhzt4u