Pseudo Optimization of E-Nose Data Using Region Selection with Feature Feedback Based on Regularized Linear Discriminant Analysis

Gu-Min Jeong, Nguyen Nghia, Sang-Il Choi
<span title="2014-12-31">2014</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/taedaf6aozg7vitz5dpgkojane" style="color: black;">Sensors</a> </i> &nbsp;
In this paper, we present a pseudo optimization method for electronic nose (e-nose) data using region selection with feature feedback based on regularized linear discriminant analysis (R-LDA) to enhance the performance and cost functions of an e-nose system. To implement cost-and performance-effective e-nose systems, the number of channels, sampling time and sensing time of the e-nose must be considered. We propose a method to select both important channels and an important time-horizon by
more &raquo; ... zing e-nose sensor data. By extending previous feature feedback results, we obtain a two-dimensional discriminant information map consisting of channels and time units by reverse mapping the feature space to the data space based on R-LDA. The discriminant information map enables optimal channels and time units to be heuristically selected to improve the performance and cost functions. The efficacy of the proposed method is demonstrated experimentally for different volatile organic compounds. In particular, our method is both cost and performance effective for the real implementation of e-nose systems.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s150100656">doi:10.3390/s150100656</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25559000">pmid:25559000</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4327041/">pmcid:PMC4327041</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/kqojajkclfdztaewsmlv5a3pcq">fatcat:kqojajkclfdztaewsmlv5a3pcq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20150924185918/http://www.mdpi.com/1424-8220/15/1/656/pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/74/6b/746b9282649c9bf12ce6d29fb0c1229463bda42f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s150100656"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327041" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>