A unified approach to ranking in probabilistic databases

Jian Li, Barna Saha, Amol Deshpande
2009 Proceedings of the VLDB Endowment  
The dramatic growth in the number of application domains that naturally generate probabilistic, uncertain data has resulted in a need for efficiently supporting complex querying and decision-making over such data. In this paper, we present a unified approach to ranking and top-k query processing in probabilistic databases by viewing it as a multi-criteria optimization problem, and by deriving a set of features that capture the key properties of a probabilistic dataset that dictate the ranked
more » ... ult. We contend that a single, specific ranking function may not suffice for probabilistic databases, and we instead propose two parameterized ranking functions, called P RF ω and P RF e , that generalize or can approximate many of the previously proposed ranking functions. We present novel generating functions-based algorithms for efficiently ranking large datasets according to these ranking functions, even if the datasets exhibit complex correlations modeled using probabilistic and/xor trees or Markov networks. We further propose that the parameters of the ranking function be learned from user preferences, and we develop an approach to learn those parameters. Finally, we present a comprehensive experimental study that illustrates the effectiveness of our parameterized ranking functions, especially P RF e , at approximating other ranking functions and the scalability of our proposed algorithms for exact or approximate ranking.
doi:10.14778/1687627.1687685 fatcat:ru7m3c35bnbvnfj3fbhkimdtaa