Abelian von Neumann algebras [article]

Charles R. Kerr
2011
This thesis carries out some of classical integration theory in the context of an operator algebra. The starting point is measure on the projections of an abelian von Neumann algebra. This yields an integral on the self-adjoint operators whose spectral projections lie in the algebra. For this integral a Radon-Nikodym theorem, as well as the usual convergence theorems is proved. The methods and results of this thesis generalize, to non-commutative von Neumann Algebras [2, 3, 5]. (1) J. Dixmier
more » ... ]. (1) J. Dixmier Les Algèbres d'Opérateurs dans l'Espace Hilbertien. Paris, 1957. (2) H.A. Dye The Radon-Nikodym theorem for finite rings of operators, Trans. Amer. Math. Soc, 72, 1952, 243-230. (3) F.J. Murray and J. von Neumann, On Rings of Operators, Ann. Math. 37, 1936, 116-229. (4) F. RIesz and B. v. Sz.-Nagy, Functional Analysis, New York, 1955. (5) I.E. Segal A non-commutative extension of abstract integration, Ann. of Math. (2) 57, 1953, 401-457.
doi:10.14288/1.0302272 fatcat:y2xx3f5lyra5vihru2k45gnx4i