Low cost nanoparticles derived from nitrogen fertilizer industry waste for the remediation of copper contaminated soil and water

Elsayed Elkhatib, Mohamed Moharem, Ayman Mahmoud
2020 Environmental Engineering Research  
The goal of this study was to produce a novel nano-scale material from nitrogen fertilizer industry byproduct (nNFIB) and assess its capability to remediate Cu contaminated wastewater and soil. The novel nNFIB was produced using planetary mono mill and characterized. Equilibrium and kinetics studies of Cu sorption by nNFIB were performed in batch system. The effects of a variety of factors, including pH, coexisting ions and adsorption time on Cu adsorption were investigated. Furthermore, Cu
more » ... Furthermore, Cu sequestration mechanism onto nNFIB was investigated using sequential extraction technique and Fourier transform infrared (FTIR) spectra before and after nNFIB adsorption. The Cu sorption equilibrium and kinetics data were successfully described by Langmuir and first-order models, respectively. The calculated maximum Cu(II) adsorption capacity (qmax) of nNFIB (100 mg g−1) was four times higher than qmax of bulk NFIB. Copper removal by nNFIB was quite fast (around 86%) in the first 5 min and gradually slowed down until achieved 100% removal at equilibrium time. The FTIR spectra and Cu fractionation data in biosolid-amended soil demonstrated that Cu sequestration in contaminated water and soil is strongly related to CaCO3 of nNFIB. The overall findings show the potential use of nNFIB as a best management practice for Cu removal from wastewater and Cu stabilization in contaminated biosolid-amended soils.
doi:10.4491/eer.2018.438 fatcat:kiiiq3deezaa5fpfmmjbpq3kqi