Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi [article]

Joel Boyd, Sean Jungbluth, Andy Leu, Paul Evans, Ben Woodcroft, Grayson Chadwick, Victoria Orphan, Jan Amend, Michael Rappe, Gene Tyson
2018 biorxiv/medrxiv   pre-print
The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane and potentially propane. The number of archaeal clades encoding the MCR complex continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through
more » ... lineages through metagenomic approaches will help resolve the evolutionary history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome (MAG; rG16) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that encodes two divergent McrABG operons similar to those found in Candidatus Bathyarchaeota and Candidatus Syntrophoarchaeum MAGs. rG16 is basal to members of the class Archaeoglobi, and encodes the genes for β-oxidation, potentially allowing an alkanotrophic metabolism similar to that proposed for Ca. Syntrophoarchaeum. rG16 also encodes a respiratory electron transport chain that can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. As the first Archaeoglobi with the MCR complex, rG16 extends our understanding of the evolution and distribution of novel MCR encoding lineages among the Archaea.
doi:10.1101/390617 fatcat:j6unwpedcfgqhjcq42lmfvbyta