The inhomogeneous ISM toward PKS 1830–211 SW: A detailed view of molecular gas at a look-back time of 7.5 Gyr

A. Schulz, C. Henkel, K. M. Menten, S. Muller, D. Muders, J. Bagdonaite, W. Ubachs
2015 Astronomy and Astrophysics  
Based on measurements with the Effelsberg 100-m telescope, a multi-line study of molecular species is presented toward the south-western source of the gravitational lens system PKS 1830-211, which is by far the best known target to study molecular gas in absorption at intermediate redshift. Determining line parameters and optical depths and performing Large Velocity Gradient radiative transfer calculations, the aims of this study are (1) to evaluate physical parameters of the absorbing
more » ... absorbing foreground gas at z~0.89, in particular its homogeneity, and (2) to monitor the spectroscopic time variability caused by fluctuations of the z~2.5 background continuum source. We find, that the gas is quite inhomogeneous with n(H2)~2 x 10^3 cm^-3 for most molecular species but with higher values for H2CO and lower ones for SO. Measuring the CS J=1-0 transition during a time interval of more than a decade, from 2001 to 2012, the peak absorption depth of the line remains approximately constant, while the line shape undergoes notable variations. Covering the time between 1996 and 2013, CS, HCO+, and CH3OH data indicate maximal integrated optical depths in ~2001 and 2011/2012. This is compatible with a ~10 yr periodicity, which, however, needs confirmation by substantially longer time monitoring. Comparing molecular abundances with those of different types of Galactic and nearby extragalactic clouds we find that the observed cloud complex does not correspond to one particular type but to a variety of cloud types with more diffuse and denser components as can be expected for an observed region with a transverse linear scale of several parsec and a likely larger depth along the line-of-sight. A tentative detection of Galactic absorption in the c-C3H2 1(10)-1(01) line at 18.343 GHz is also reported.
doi:10.1051/0004-6361/201425072 fatcat:ncptu5cahrdkrh6fheq7msv5f4