Time-weighted Attentional Session-Aware Recommender System [article]

Mei Wang, Weizhi Li, Yan Yan
2019 arXiv   pre-print
Session-based Recurrent Neural Networks (RNNs) are gaining increasing popularity for recommendation task, due to the high autocorrelation of user's behavior on the latest session and the effectiveness of RNN to capture the sequence order information. However, most existing session-based RNN recommender systems still solely focus on the short-term interactions within a single session and completely discard all the other long-term data across different sessions. While traditional Collaborative
more » ... tering (CF) methods have many advanced research works on exploring long-term dependency, which show great value to be explored and exploited in deep learning models. Therefore, in this paper, we propose ASARS, a novel framework that effectively imports the temporal dynamics methodology in CF into session-based RNN system in DL, such that the temporal info can act as scalable weights by a parallel attentional network. Specifically, we first conduct an extensive data analysis to show the distribution and importance of such temporal interactions data both within sessions and across sessions. And then, our ASARS framework promotes two novel models: (1) an inter-session temporal dynamic model that captures the long-term user interaction for RNN recommender system. We integrate the time changes in session RNN and add user preferences as model drifting; and (2) a novel triangle parallel attention network that enhances the original RNN model by incorporating time information. Such triangle parallel network is also specially designed for realizing data argumentation in sequence-to-scalar RNN architecture, and thus it can be trained very efficiently. Our extensive experiments on four real datasets from different domains demonstrate the effectiveness and large improvement of ASARS for personalized recommendation.
arXiv:1909.05414v1 fatcat:wprgje6jsbh33a4djewf3r5qda