Robust Tubes in Nonlinear Model Predictive Control

Mark Cannon, Johannes Buerger, Basil Kouvaritakis, Saša Rakovic
2011 IEEE Transactions on Automatic Control  
Nonlinear model predictive control (NMPC) strategies based on linearization about predicted system trajectories enable the online NMPC optimization to be performed by a sequence of convex optimization problems. The approach relies on bounds on linearization errors in order to ensure constraint satisfaction and convergence of the performance index during the optimization at each sampling instant and along closed loop system trajectories. This paper proposes bounds based on robust tubes
more » ... ust tubes constructed around predicted trajectories. To ensure local optimality, the bounds are non-conservative for the case of zero linearization error, which requires the tube cross-sections to vary along predicted trajectories. The feasibility, stability and convergence properties of the algorithm are established without the need for predictions to satisfy local optimality criteria. The strategy is applied to a simulated fixed-rotor helicopter.
doi:10.1109/tac.2011.2135190 fatcat:y73p6xxhurhgrnqs4bk7np2cn4