FPGA Design for Algebraic Tori-Based Public-Key Cryptography

Junfeng Fan, Lejla Batina, Kazuo Sakiyama, Ingrid Verbauwhede
2008 2008 Design, Automation and Test in Europe  
Algebraic torus-based cryptosystems are an alternative for Public-Key Cryptography (PKC). It maintains the security of a larger group while the actual computations are performed in a subgroup. Compared with RSA for the same security level, it allows faster exponentiation and much shorter bandwidth for the transmitted data. In this work we implement a torus-based cryptosystem, the so-called CEILIDH, on a multicore platform with an FPGA. This platform consists of a Xilinx MicroBlaze core and a
more » ... Blaze core and a multicore coprocessor. The platform supports CEILIDH, RSA and ECC over prime fields. The results show that one 170bit torus T 6 exponentiation requires 20 ms, which is 5 times faster than 1024-bit RSA implementation on the same platform.
doi:10.1109/date.2008.4484857 dblp:conf/date/FanBSV08 fatcat:iecbxpzrrfbapmbccs6tsqtntq