Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data

Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, Ferdinand Plaschke
2020 Geoscientific Instrumentation, Methods and Data Systems  
Abstract. In situ measurement of the magnetic field using spaceborne instruments requires a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and the time required to build a spacecraft. Here we present an alternative sensor configuration and a technique allowing for removal of the spacecraft-generated AC disturbances from the magnetic field measurements, thus lessening
more » ... ts, thus lessening the need for a magnetic cleanliness programme and allowing for shorter boom length. The final expression of the corrected data takes the form of a linear combination of the measurements from all sensors, allowing for simple onboard software implementation. The proposed technique is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) on board the Korean geostationary satellite GeoKompsat-2A (GK2A). In contrast to other missions where multi-sensor measurements were used to clean the data on the ground, the SOSMAG instrument performs the cleaning on board and transmits the corrected data in real time, as needed by space weather applications. The successful elimination of the AC disturbances originating from several sources validates the proposed cleaning technique.
doi:10.5194/gi-9-451-2020 fatcat:476rugompfauzpwstx3aslnypu