VaPar Synth – A Variational Parametric Model for Audio Synthesis [article]

Krishna Subramani, Preeti Rao, Alexandre D'Hooge
<span title="2020-03-30">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
With the advent of data-driven statistical modeling and abundant computing power, researchers are turning increasingly to deep learning for audio synthesis. These methods try to model audio signals directly in the time or frequency domain. In the interest of more flexible control over the generated sound, it could be more useful to work with a parametric representation of the signal which corresponds more directly to the musical attributes such as pitch, dynamics and timbre. We present VaPar
more &raquo; ... th - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation. We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2004.00001v1">arXiv:2004.00001v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rkq5hnofmze47eucdwbz73nt2m">fatcat:rkq5hnofmze47eucdwbz73nt2m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200403001538/https://arxiv.org/pdf/2004.00001v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2004.00001v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>