A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit <a rel="external noopener" href="http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008250&type=printable">the original URL</a>. The file type is <code>application/pdf</code>.
Feature Selection and Classification of MAQC-II Breast Cancer and Multiple Myeloma Microarray Gene Expression Data
<span title="2009-12-11">2009</span>
<i title="Public Library of Science (PLoS)">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a>
</i>
Microarray data has a high dimension of variables but available datasets usually have only a small number of samples, thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious feature
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0008250">doi:10.1371/journal.pone.0008250</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20011240">pmid:20011240</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2789385/">pmcid:PMC2789385</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wgvmaxq335cnfjcnggqivdiooi">fatcat:wgvmaxq335cnfjcnggqivdiooi</a>
</span>
more »
... in microarray data analysis can result in significant reduction of cost while maintaining or improving the classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we propose a gene selection method called Recursive Feature Addition (RFA), which combines supervised learning and statistical similarity measures. We compare our method with the following gene selection methods:
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170924175901/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008250&type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/10/41/10417e72eea255a958c099469970320fcd9579c8.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0008250">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
plos.org
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789385" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>