What controls the magnetic geometry of M dwarfs?

T. Gastine, J. Morin, L. Duarte, A. Reiners, U. R. Christensen, J. Wicht
2012 Astronomy and Astrophysics  
Context: observations of rapidly rotating M dwarfs show a broad variety of large-scale magnetic fields encompassing dipole-dominated and multipolar geometries. In dynamo models, the relative importance of inertia in the force balance -- quantified by the local Rossby number -- is known to have a strong impact on the magnetic field geometry. Aims: we aim to assess the relevance of the local Rossby number in controlling the large-scale magnetic field geometry of M dwarfs. Methods: we explore the
more » ... imilarities between anelastic dynamo models in spherical shells and observations of active M-dwarfs, focusing on field geometries derived from spectropolarimetric studies. To do so, we construct observation-based quantities aimed to reflect the diagnostic parameters employed in numerical models. Results: the transition between dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is tentatively attributed to a Rossby number threshold. We interpret late M dwarfs magnetism to result from a dynamo bistability occurring at low Rossby number. By analogy with numerical models, we expect different amplitudes of differential rotation on the two dynamo branches.
doi:10.1051/0004-6361/201220317 fatcat:enpsjdncxnf2xkujtelu7pqj4e