Digital System Performance Enhancement of a Tent Map-Based ADC for Monitoring Photovoltaic Systems

Philippa Hazell, Peter Mather, Andrew Longstaff, Simon Fletcher
2020 Electronics  
Efficient photovoltaic installations require control systems that detect small signal variations over large measurement ranges. High measurement accuracy requires data acquisition systems with high-resolution analogue-to-digital converters; however, high resolutions and operational speeds generally increase costs. Research has proven low-cost prototyping of non-linear chaotic Tent Map-based analogue-to-digital converters (which fold and amplify the input signal, emphasizing small signal
more » ... mall signal variations) is feasible, but inherent non-ideal Tent Map gains reduce the output accuracy and restrict adoption within data acquisition systems. This paper demonstrates a novel compensation algorithm, developed as a digital electronic system, for non-ideal Tent Map gain, enabling high accuracy estimation of the analogue-to-digital converter analogue input signal. Approximation of the gain difference compensation values (reducing digital hardware requirements, enabling efficient real-time compensation), were also investigated via simulation. The algorithm improved the effective resolution of a 16, 20 and 24 Tent Map-stage analogue-to-digital converter model from an average of 5 to 15.5, 19.2, and 23 bits, respectively, over the Tent Map gain range of 1.9 to 1.99. The simulated digital compensation system for a seven Tent Map-stage analogue-to-digital converter enhanced the accuracy from 4 to 7 bits, confirming real-time compensation for non-ideal gain in Tent Map-based analogue-to-digital converters was achievable.
doi:10.3390/electronics9091554 fatcat:mnhdu75ggbh67hvanhxmxfck3u