A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="http://pdfs.semanticscholar.org/c2a0/f8f8d22f2d0e01f4c907dee6f450fc984f44.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Extractors for Jacobian of Hyperelliptic Curves of Genus 2 in Odd Characteristic
[chapter]
<i title="Springer Berlin Heidelberg">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/g5d7lefgwnc2veyz5jmmfbvmbu" style="color: black;">Cryptography and Coding</a>
</i>
We propose two simple and efficient deterministic extractors for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H defined over Fq, for some odd q. Our first extractor, SEJ, called sum extractor, for a given point D on J(Fq), outputs the sum of abscissas of rational points on H in the support of D, considering D as a reduced divisor. Similarly the second extractor, PEJ, called product extractor, for a given point D on the J(Fq), outputs the product of abscissas of rational points in the
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-540-77272-9_19">doi:10.1007/978-3-540-77272-9_19</a>
<a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/ima/Farashahi07.html">dblp:conf/ima/Farashahi07</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bdg4zxjkgbf5njcbtq7otpbsjq">fatcat:bdg4zxjkgbf5njcbtq7otpbsjq</a>
</span>
more »
... port of D. Provided that the point D is chosen uniformly at random in J(Fq), the element extracted from the point D is indistinguishable from a uniformly random variable in Fq. Thanks to the Kummer surface K, that is associated to the Jacobian of H over Fq, we propose the sum and product extractors, SEK and PEK, for K(Fq). These extractors are the modified versions of the extractors SEJ and PEJ. Provided a point K is chosen uniformly at random in K, the element extracted from the point K is statistically close to a uniformly random variable in Fq.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190303043507/http://pdfs.semanticscholar.org/c2a0/f8f8d22f2d0e01f4c907dee6f450fc984f44.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/c2/a0/c2a0f8f8d22f2d0e01f4c907dee6f450fc984f44.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-540-77272-9_19">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
springer.com
</button>
</a>