Capsule Network-Based Deep Transfer Learning Model for Face Recognition

Keshetti Sreekala, C. Pretty Diana Cyril, S. Neelakandan, Saravanan Chandrasekaran, Ranjan Walia, Eric Ofori Martinson, Muhammad Zubair Asghar
2022 Wireless Communications and Mobile Computing  
Face recognition (FR) is a technique for recognizing individuals through the use of face photographs. The FR technology is widely applicable in a variety of fields, including security, biometrics, authentication, law enforcement, smart cards, and surveillance. Recent advances in deep learning (DL) models, particularly convolutional neural networks (CNNs), have demonstrated promising results in the field of FR. CNN models that have been pretrained can be utilized to extract characteristics for
more » ... fective FR. In this regard, this research introduces the GWOECN-FR approach, a unique grey wolf optimization with an enhanced capsule network-based deep transfer learning model for real-time face recognition. The proposed GWOECN-FR approach is primarily concerned with reliably and rapidly recognizing faces in input photos. Additionally, the GWOECN-FR approach is preprocessed in two steps, namely, data augmentation and noise reduction by bilateral filtering (BF). Additionally, for feature vector extraction, an expanded capsule network (ECN) model can be used. Additionally, grey wolf optimization (GWO) combined with a stacked autoencoder (SAE) model is used to identify and classify faces in images. The GWO algorithm is used to optimize the SAE model's weight and bias settings. The GWOECN-FR technique's performance is validated using a benchmark dataset, and the results are analyzed in a variety of aspects. The GWOECN-FR approach achieved a TST of 0.03 s on the FEI dataset, whereas the AlexNet-SVM, ResNet-SVM, and AlexNet models achieved TSTs of 0.125 s, 0.0051 s, and 0.0062 s, respectively. The experimental results established that the GWOECN-FR technology outperformed more contemporary approaches.
doi:10.1155/2022/2086613 fatcat:awyjjvphyfcmli6m4h5bi3mh6u