Real time detection and classification of traffic signs based on YOLO version 3 algorithm
V.N. Sichkar, S.A. Kolyubin
2020
Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki
For citation: Sichkar V.N., Kolyubin S.A. Real time detection and classification of traffic signs based on YOLO version 3 algorithm. Abstract The issue of effective detection and classification of various traffic signs is studied. The two-stage method is proposed for creation of holistic model with end-to-end solution. The first stage includes implementation of effective localization of traffic signs by YOLO version 3 algorithm (You Only Look Once). At the first stage the traffic signs are
more »
... ed into four categories according to their shapes. At the second stage, an accurate classification of the located traffic signs is performed into one of the forty-three predefined categories. The second stage is based on another model with one convolutional neural layer. The model for detection of traffic signs was trained on German Traffic Sign Detection Benchmark (GTSDB) with 630 and 111 RGB images for training and validation, respectively. Сlassification model was trained on German Traffic Sign Recognition Benchmark (GTSRB) with 66000 RGB images on pure "numpy" library with 19 × 19 dimension of convolutional layer filters and reached 0.868 accuracy on testing dataset. The experimental results illustrated that the training of the first model deep network with only four categories for location of traffic signs produced high mAP (mean Average Precision) accuracy reaching 97.22 %. Additional convolutional layer of the second model applied for final classification creates efficient entire system. Experiments on processing video files demonstrated frames per second (FMS) between thirty-six and sixty-one that makes the system feasible for real time applications. The frames per second depended on the number of traffic signs to be detected and classified in every single frame in the range from six to one. Информация о статье Поступила в редакцию 29.04.20, принята к печати 26.05.20 Язык статьи -английский Ссылка для цитирования: Сичкар В.Н., Колюбин С.А. Детектирование и классификация дорожных знаков в реальном времени на основе алгоритма YOLO версии 3 // Научно-технический вестник информационных технологий, механики и оптики. Научно-технический вестник информационных технологий, механики и оптики, 2020, том 20, № 3 419 на GTSRB (German Traffic Sign Recognition Benchmark) с 66000 RGB-изображениями, с помощью библиотеки «numpy», фильтрами сверточного слоя размерностью 19 × 19, и достигла точности 0,868 на наборе данных для тестирования. Результаты экспериментов показали, что обучение глубокой нейронной сети первой модели только с 4 категориями для определения координат дорожных знаков выдает высокую точность mAP (mean Average Precision), достигающую 97,22 %. Дополнительный сверточный слой второй модели, добавленный для окончательной классификации, создает эффективную целостную систему. Эксперименты по обработке видеофайлов показали FPS (frames per second) в диапазоне 36 и 61, что делает систему пригодной для использования в реальном времени. FPS зависел от количества дорожных знаков, которые должны быть локализованы и классифицированы в каждом отдельном кадре, и находились в диапазоне от 6 до 1. Ключевые слова детектирование дорожных знаков, глубокая сверточная нейронная сеть, YOLO v3, классификация дорожных знаков, точность детектирования
doi:10.17586/2226-1494-2020-20-3-418-424
fatcat:w74g3krjfjduhbf4msszu5aveu