Model-Based Reinforcement Learning [chapter]

Soumya Ray, Prasad Tadepalli
<span title="">2014</span> <i title="Springer US"> Encyclopedia of Machine Learning and Data Mining </i> &nbsp;
Model-based Reinforcement Learning refers to learning optimal behavior indirectly by learning a model of the environment by taking actions and observing the outcomes that include the next state and the immediate reward. The models predict the outcomes of actions and are used in lieu of or in addition to interaction with the environment to learn optimal policies.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/978-1-4899-7502-7_561-1</a> <a target="_blank" rel="external noopener" href="">fatcat:4pwzznqsefhq3e2oqs2mavvxp4</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>