A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Differential Evolution Algorithm Combined with Uncertainty Handling Techniques for Stochastic Reentrant Job Shop Scheduling Problem
2022
Complexity
This paper considers two kinds of stochastic reentrant job shop scheduling problems (SRJSSP), i.e., the SRJSSP with the maximum tardiness criterion and the SRJSSP with the makespan criterion. Owing to the NP-complete complexity of the considered RJSSPs, an effective differential evolutionary algorithm (DEA) combined with two uncertainty handling techniques, namely, DEA_UHT, is proposed to address these problems. Firstly, to reasonably control the computation cost, the optimal computing budget
doi:10.1155/2022/9924163
fatcat:z7nknhbn3jbo5mwtyquxhutrnm