A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://res.mdpi.com/d_attachment/mathematics/mathematics-08-00240/article_deploy/mathematics-08-00240.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Unicyclic Graphs Whose Completely Regular Endomorphisms form a Monoid
<span title="2020-02-13">2020</span>
<i title="MDPI AG">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ye33srllvnanjouxn4tmrfgjsq" style="color: black;">Mathematics</a>
</i>
In this paper, completely regular endomorphisms of unicyclic graphs are explored. Let G be a unicyclic graph and let c E n d ( G ) be the set of all completely regular endomorphisms of G. The necessary and sufficient conditions under which c E n d ( G ) forms a monoid are given. It is shown that c E n d ( G ) forms a submonoid of E n d ( G ) if and only if G is an odd cycle or G = G ( n , m ) for some odd n ≥ 3 and integer m ≥ 1 .
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/math8020240">doi:10.3390/math8020240</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/llvummkxyzedbm46mmmywqdlxu">fatcat:llvummkxyzedbm46mmmywqdlxu</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200216182129/https://res.mdpi.com/d_attachment/mathematics/mathematics-08-00240/article_deploy/mathematics-08-00240.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/a4/a1/a4a1274c0cd47465d4d5abc7ca0d48d93ebebf30.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/math8020240">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
mdpi.com
</button>
</a>