Unicyclic Graphs Whose Completely Regular Endomorphisms form a Monoid

Rui Cu, Hailong Hou
<span title="2020-02-13">2020</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ye33srllvnanjouxn4tmrfgjsq" style="color: black;">Mathematics</a> </i> &nbsp;
In this paper, completely regular endomorphisms of unicyclic graphs are explored. Let G be a unicyclic graph and let c E n d ( G ) be the set of all completely regular endomorphisms of G. The necessary and sufficient conditions under which c E n d ( G ) forms a monoid are given. It is shown that c E n d ( G ) forms a submonoid of E n d ( G ) if and only if G is an odd cycle or G = G ( n , m ) for some odd n ≥ 3 and integer m ≥ 1 .
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/math8020240">doi:10.3390/math8020240</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/llvummkxyzedbm46mmmywqdlxu">fatcat:llvummkxyzedbm46mmmywqdlxu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200216182129/https://res.mdpi.com/d_attachment/mathematics/mathematics-08-00240/article_deploy/mathematics-08-00240.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a4/a1/a4a1274c0cd47465d4d5abc7ca0d48d93ebebf30.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/math8020240"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>