Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria [article]

Dario R. Shaw, Muhammad Ali, Krishna P. Katuri, Jeffrey A. Gralnick, Joachim Reimann, Rob Mesman, Laura van Niftrik, Mike S. M. Jetten, Pascal E. Saikaly
2019 biorxiv/medrxiv   pre-print
AbstractAnaerobic ammonium oxidation (anammox) by anammox bacteria contributes significantly to the global nitrogen cycle, and plays a major role in sustainable wastewater treatment. Anammox bacteria convert ammonium (NH4+) to dinitrogen gas (N2) using nitrite (NO2−) or nitric oxide (NO) as the electron acceptor. In the absence of NO2− or NO, anammox bacteria can couple formate oxidation to the reduction of metal oxides such as Fe(III) or Mn(IV). Their genomes contain homologs of Geobacter and
more » ... hewanella cytochromes involved in extracellular electron transfer (EET). However, it is still unknown whether anammox bacteria have EET capability and can couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors. Here we show using complementary approaches that in the absence of NO2−, freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors such as graphene oxide (GO) or electrodes poised at a certain potential in microbial electrolysis cells (MECs). Metagenomics, fluorescence in-situ hybridization and electrochemical analyses coupled with MEC performance confirmed that anammox electrode biofilms were responsible for current generation through EET-dependent oxidation of NH4+. 15N-labelling experiments revealed the molecular mechanism of the EET-dependent anammox process. NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate when electrode was the terminal electron acceptor. Comparative transcriptomics analysis supported isotope labelling experiments and revealed an alternative pathway for NH4+ oxidation coupled to EET when electrode is used as electron acceptor compared to NO2−as electron acceptor. To our knowledge, our results provide the first experimental evidence that marine and freshwater anammox bacteria can couple NH4+ oxidation with EET, which is a significant finding, and challenges our perception of a key player of anaerobic oxidation of NH4+ in natural environments and engineered systems.
doi:10.1101/855817 fatcat:k6cdmkxxxzfhfegqzwbnwxarzm