A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Multi-label rules for phishing classification
2015
Applied Computing and Informatics
Generating multi-label rules in associative classification (AC) from single label data sets is considered a challenging task making the number of existing algorithms for this task rare. Current AC algorithms produce only the largest frequency class connected with a rule in the training data set and discard all other classes even though these classes have data representation with the rule's body. In this paper, we deal with the above problem by proposing an AC algorithm called Enhanced
doi:10.1016/j.aci.2014.07.002
fatcat:lriyxszokzc7bjqgh3ciqk7e2u