Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction–diffusion model

Omri Har-Shemesh, Rick Quax, Alfons G Hoekstra, Peter M A Sloot
2016 Journal of Statistical Mechanics: Theory and Experiment  
The Fisher-Rao metric from Information Geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of Information Geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher-Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reaction-diffusion
more » ... del using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.
doi:10.1088/1742-5468/2016/04/043301 fatcat:z3nnkxtmxzbgvfedda4mhxvkja