A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Uncloneable Quantum Encryption via Random Oracles
2019
One of the key distinctions between classical and quantum information is given by the no-cloning theorem: unlike bits, arbitrary qubits cannot be perfectly copied. This fact has been the inspiration for many quantum cryptographic protocols. In this thesis, we introduce a new cryptographic functionality called uncloneable encryption. This functionality allows the encryption of a classical message such that two collaborating but non-communicating adversaries may not both simultaneously recover
doi:10.20381/ruor-23107
fatcat:ny24gbfdyjg2tlfvfowdudtnei