A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Mixability is Bayes Risk Curvature Relative to Log Loss
2011
Journal of machine learning research
Mixability of a loss governs the best possible performance when aggregating expert predictions with respect to that loss. The determination of the mixability constant for binary losses is straightforward but opaque. In the binary case we make this transparent and simpler by characterising mixability in terms of the second derivative of the Bayes risk of proper losses. We then extend this result to multiclass proper losses where there are few existing results. We show that mixability is governed
dblp:journals/jmlr/ErvenRW11
fatcat:xe4s6deufnhgtcmu5u2zcraqdy