Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example

Sheng Zhang, Yuanyuan Wei, Bo Xu
2019 Complexity  
In this paper, the spectral transform with the reputation of nonlinear Fourier transform is extended for the first time to a local time-fractional Korteweg-de vries (tfKdV) equation. More specifically, a linear spectral problem associated with the KdV equation of integer order is first equipped with local time-fractional derivative. Based on the spectral problem with the equipped local time-fractional derivative, the local tfKdV equation with Lax integrability is then derived and solved by
more » ... and solved by extending the spectral transform. As a result, a formula of exact solution with Mittag-Leffler functions is obtained. Finally, in the case of reflectionless potential the obtained exact solution is reduced to fractional n-soliton solution. In order to gain more insights into the fractional n-soliton dynamics, the dynamical evolutions of the reduced fractional one-, two-, and three-soliton solutions are simulated. It is shown that the velocities of the reduced fractional one-, two-, and three-soliton solutions change with the fractional order.
doi:10.1155/2019/7952871 fatcat:awwy7l5xgjgkxgnhvk662dm2du