Reduced dimension control based on online recursive principal component analysis

Jianguo Yao, Xue Liu, Xiaoyun Zhu
2009 2009 American Control Conference  
Automated management of complex information technology applications and systems require dynamic configuration of both application-level and system-level parameters. The existence of large number of tunable parameters makes it difficult to design a feedback controller that adjusts these parameters effectively in order to achieve application-level performance targets. In this paper, we introduce a generic approach for reduced dimension control (RDC) that combines online selection of critical
more » ... on of critical control knobs through online recursive principal component analysis (ORPCA) and adaptive control of the identified knobs. The latter relies on the online estimation of the input-output model with the selected control knobs using the recursive least squares (RLS) method and a self-tuning linear quadratic (LQ) optimal controller for output regulation. The results of a simulation study in Matlab are presented to demonstrate the effectiveness of our RDC approach.
doi:10.1109/acc.2009.5160376 dblp:conf/amcc/YaoLZ09a fatcat:dtk3lfdf2jbcxoeufj7shihdri