Augmenting Around-Device Interaction by Geomagnetic Field Built-in Sensor Utilization

Sandi Ljubic, Franko Hržić, Alen Salkanovic, Ivan Štajduhar
2021 Sensors  
In this paper, we investigate the possibilities for augmenting interaction around the mobile device, with the aim of enabling input techniques that do not rely on typical touch-based gestures. The presented research focuses on utilizing a built-in magnetic field sensor, whose readouts are intentionally affected by moving a strong permanent magnet around a smartphone device. Different approaches for supporting magnet-based Around-Device Interaction are applied, including magnetic field
more » ... ting, curve-fitting modeling, and machine learning. We implemented the corresponding proof-of-concept applications that incorporate magnet-based interaction. Namely, text entry is achieved by discrete positioning of the magnet within a keyboard mockup, and free-move pointing is enabled by monitoring the magnet's continuous movement in real-time. The related solutions successfully expand both the interaction language and the interaction space in front of the device without altering its hardware or involving sophisticated peripherals. A controlled experiment was conducted to evaluate the provided text entry method initially. The obtained results were promising (text entry speed of nine words per minute) and served as a motivation for implementing new interaction modalities. The use of neural networks has shown to be a better approach than curve fitting to support free-move pointing. We demonstrate how neural networks with a very small number of input parameters can be used to provide highly usable pointing with an acceptable level of error (mean absolute error of 3 mm for pointer position on the smartphone display).
doi:10.3390/s21093087 pmid:33925186 fatcat:zh5lfjs27jhkdexejhtvhuih6i