A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Input Data Analysis Using Neural Networks
2000
Simulation (San Diego, Calif.)
Simulation deals with real-life phenomena by constructing representative models of a system being questioned. Input data provide a driving force for such models. The requirement for identifying the underlying distributions of data sets is encountered in many fields and simulation applications (e.g., manufacturing economics, etc.). Most of the time, after the collection of the raw data, the true statistical distribution is sought by the aid of nonparametric statistical methods. In this paper, we
doi:10.1177/003754970007400301
fatcat:4ztui6wipffkljsw3foqsxhbcm