Multirobot Adaptive Task Allocation of Intelligent Warehouse Based on Evolutionary Strategy

Yifan Liu, Fei Liu, Li Tang, Chuanzheng Bai, Li Liu, Yunze He
2022 Journal of Sensors  
To solve the dynamic and real-time problem of multirobot task allocation in intelligent warehouse system under parts-to-picker mode, this paper presents a combined solution based on adaptive task pool strategy and Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) algorithm. In the first stage of the solution, a variable task pool is used to store dynamically added tasks, which can dynamically divide continuous and large-scale task allocation problems into small-scale subproblems to
more » ... ve them to meet dynamic requirements. And an adaptive control strategy is used to automatically adjust the total number of tasks in the task pool to achieve a trade-off among throughput, energy consumption, and waiting time, which has better adaptability than manually adjusting the size of the task pool. In the second stage of the solution, when the task pool is full, tasks in the task pool will be assigned to robots. For the task allocation problem, this paper regards it as an optimization problem and uses the CMA-ES algorithm to find the optimal task assignment solution for all the robots. By comparing with fixed threshold method under 56 different task pool sizes, the experimental results show that the throughput can be close to reaching the optimal level, and the average distance traveled by robots to handle each unit is lower using adaptive threshold method; so, adaptive task pool solution has better adaptability and can find the optimal task pool size by itself. This method can satisfy the dynamic and real-time requirements and can be effectively applied to the intelligent warehouse system.
doi:10.1155/2022/2056617 fatcat:vicj2ndjufduhc2qlcxo246k3e