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The healthy heartbeat is traditionally thought to be regulated according to the classical principle of 
homeostasis whereby physiologic systems operate to reduce variability and achieve an 
equilibrium-like state [Physiol. Rev. 9, 399-431 (1929)]. However, recent studies [Phys. Rev. Lett. 
70, 1343-1346 (1993); Fractals in Biology and Medicine (Birkhauser-Verlag, Basel, 1994), pp. 
55-65] reveal that under normal conditions, beat-to-beat fluctuations in heart rate display the kind 
of long-range correlations typically exhibited by dynamical systems far from equilibrium [Phys. 
Rev. Lett. 59, 381-384 (1987)]. In contrast, heart rate time series from patients with severe 
congestive heart failure show a breakdown of this long-range correlation behavior. We describe a 
new method-detrended fluctuation analysis (DFA)-for quantifying this correlation property in 
non-stationary physiological time series. Application of this technique shows evidence for a 
crossover phenomenon associated with a change in short and long-range scaling exponents. This 
method may be of use in distinguishing healthy from pathologic data sets based on differences in 
these scaling properties. © 1995 American Institute of Physics. 

1. INTRODUCTION 

Clinicians often describe the normal activity of the heart 
as "regular sinus rhythm." But in fact cardiac interbeat in­
tervals normally fluctuate in a complex, apparently erratic 
manner'·2 [Fig. 1 (a)]. This highly irregular behavior has re­
cently motivated researchers3

" to apply time series analyses 
that derive from statistical physics, especially methods for 
the study of critical phenomena where fluctuations at all 
length (time) scales occur. These studies show that under 
healthy conditions, interbeat interval time series exhibit 
long-range power-law correlations reminiscent of physical 
systems near a critical point.5,6 Furthermore, certain disease 
states may be accompanied by alterations in this scale­
invariant (fractal) correlation property. Here we explore the 
potential utility of such scaling alterations in the detection of 
pathological states. 

Our analysis in this paper is based on the digitized elec­
trocardiograms of beat-to-beat heart rate fluctuations re­
corded with an ambulatory (Holter) monitor. The time series 
obtained by plotting the sequential intervals between beat i 
and beat i+ 1, denoted by B(i), typically reveals a complex 
type of variability [Fig. l(a)]. The mechanism underlying 
such fluctuations appears to be related primarily to counter­
vailing neuroautonomic inputs. Parasympathetic stimulation 
decreases the firing rate of pacemaker cells in the heart's 
sinus node. Sympathetic stimulation has the opposite effect. 
The nonlinear interaction (competition) between the two 
branches of the autonomic nervous system is the postulated 
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mechanism for the type of erratic heart rate variability re­
corded in healthy subjects.'·7 

An immediate problem facing researchers applying time 
series analysis to interbeat interval data is that the heartbeat 
time series is often highly non-stationary. One question is 
whether this heterogeneous structure arises trivially from 
changes in environmental conditions having little to do with 
the intrinsic dynamics of the system itself. Alternatively, 
these fluctuations may arise from a complex nonlinear dy­
namical system rather tl~an being an epiphenomenon of en­
vironmental stimuli. 

From a practical point of view, if the fluctuations driven 
by uncorrelated stimuli can be decomposed from intrinsic 
fluctuations generated by the dynamical system, then these 
two classes of fluctuations may be shown to have very dif­
ferent correlation properties. If that is the case, then a plau­
sible consideration is that only the fluctuations arising from 
the dynamics of the complex, multiple-component system 
should show long-range correlations. Other responses should 
give rise to a different type of fluctuation (although highly 
non-stationary) having characteristic time scales (i.e. fre­
quencies related to the ·stimuli). This type of "noise," al­
though physiologically important, can be treated as a "trend" 
and distinguished from the more subtle fluctuations that may 
reveal intrinsic correlation properties of the dynamics. To 
this end, we introduced a modified root mean square analysis 
of a random walk-termed detrended fluctuation analysis 
(DFA)'·9 -to the analysis of physiological data. The advan-

© 1995 American Institute of Physics 82 
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FIG. 1. (a) The interbeat interval time series B(i) of 1000 beats. (b) The 
integrated time series: y(k) "" :L7= I[B(i) - Bave], where B(i) is the interbeat 
interval shown in (a). The vertical dotted lines indicate box of size 
n = 100, the solid straight line segments represent the "trend" estimated in 
each box by a least-squares fit. 

tages of DFA over conventional methods (e.g. spectral analy­
sis and Hurst analysis) are that it permits the detection of 
long-range correlations embedded in a seemingly non­
stationary time series, and also avoids the spurious detection 
of apparent long-range correlations that are an artifact of 
non-stationarity. This method has been validated on control 
time series that consist of long-range correlations with the 
superposition of a non-stationary external trend.8 The DFA 
method has also been successfully applied to detect long­
range correlations in highly heterogeneous DNA 
sequences,8,lQ,1l and other complex physiological signals. 12 

Il. DETRENDED FLUCTUATION ANALYSIS 
COMPUTATION 

To illustrate the DFA algorithm, we use the interbeat 
time series shown in Fig. 1 (a) as an example. Briefly, the 
interbeat interval time series (of total length N) is first inte­
grated, y(k) = L~~ I[BO) - Bm], where B(i) is the ith inter­
beat interval and B '" is the average interbeat interval. Next 
the integrated time series is divided into boxes of equal 
length, n. In each box of length n, a least-squares line is fit 
to the data (representing the trend in that bdx) [Fig. I(b)]. 
The y coordinate of the straight line segments is denoted by 
y,,(k). Next we detrend the integrated time series, y(k), by 
subtracting the local trend, Yn(k), in each box. The root­
mean-square fluctuation of this integrated and detrended time 
series is calculated by 

F(n)= 
1 N - L: [y(k)-y,,(k)]2. 
N 

k=l 

(l) 

This computation is repeated over all time scales (box 
sizes) to provide a relationship between F(n), the average 
fluctuation as a function of box size, and the box size n (I.e. 
the number of beats in a box which is the size of the window 
of observation). TYpically, F(n) will increase with box size 
n. A linear relationship on a double l~g graph indicates the 
presence of scaling. Under such conditions, the fluctuations 
can be characterized by a scaling exponent a, the slope of 
the line relating log F(n) to log n. Consider first a process 
where the value at one interbeat interval is completely un­
correlated from any previous values, e.g. white noise. This 
can be achieved by using a time series for which the order of 
the points has been shuffled (so-called "surrogate" data set). 
For this type of uncorrelated data, the integrated value, y(k), 
corresponds to a random walk; and therefore a = 0.5.1' If 
there are only short-term correlations, the initial slope may 
be different from 0.5, but a will approach 0.5 for large win­
dow sizes. An a greater than 0.5 and less than or equal to 
1.0 indicates persistent long-range power-law correlations 
such that a large (compared to the average) interbeat interval 
is more likely to be followed by large interval and vice versa. 
In contrast, 0 < a< 0.5 indicates a different type of power­
law correlation such that large and small values of the time 
series are more likely to alternate. 14 A special case of a = I 
corresponds to lIf nOiSe.'·l' For a'" 1, correlations exist but 
cease to be of a power-law form; a = 1.5 indicates Brown 
noise, the integration of white noise. The a exponent can 
also be viewed as an indicator that describes the "rough­
ness" of the original time series: the larger the value of a, 
the smoother the time series. In this context, Ilf noise can be 
interpreted as a "compromise" between the complete unpre­
dictability of white noise (very rough "landscape") and the 
very smooth "landscape" of Brownian noise. 16

,17 

Figure 2 compares the DFA analysis of representative 24 
hour interbeat interval time series of a healthy subject (0) 
and a patient with congestive heart failure (.6.). Notice that 
for large time scales (asymptotic behavior), the healthy sub­
ject interbeat interval time series shows almost perfect 
power-law scaling over two decades (20';;n';; lOOOO) with 
a= I (i.e., lIf noise) while for the pathologic data set 
a= 1.3 (closer to Brownian noise). This result is consistent 
with our previous finding that there is a significant difference 
in the long-range scaling behavior between healthy and dis-
eased stat;s.3,4 ~ ~ . 

Ill. NORMAL VS PATHOLOGIC TIME SERIES 

To test for statistical significance using the DFA method, 
we re-analyzed cardiac interbeat data from two different 
groups of subjects reported in our previous work:3 12 healthy 
adults without clinical evidence of heart disease (age range: 
29-64 years, mean 44) and IS adults with severe heart fail­
ure (ag~ range: 22-71 years; mean 56).18 Data from each 
subject comprise approximately 24 hours of ECG recording. 
Data from patients with heart failure due to severe left ven-

CHAOS, Vol. 5, No.1, 1995 
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FIG. 2. Plot of log F(n) vs log 11 (see description of DFA computation in 
text) for two very long interbeat interval time series (~24 hours). The 
circles are from a healthy subject white the triangles are from a subject with 
congestive heart failure. Arrows indicate "crossover" points in scaling. 

tricular dysfunction are likely to be particularly informative 
in analyzing correlations under pathologic conditions since 
these individuals have abnormalities in both the sympathetic 
and parasympathetic control mechanismsl9 that regulate 
beat-ta-beat variability. Previous studies have demonstrated 
marked changes in short-range heart rate dynamics in heart 
failure compared to healthy function, including the emer­
gence of intermittent relatively low frequency (-I cyclel 
minute) heart rate oscillations associated with the well­
recognized syndrome of periodic (Cheyne-Stokes) 
respiration, an abnormal breathing pattern often associated 
with low cardiac outpUt. 19 

We observe the following scaling exponent (for time 
scale 102_104 beats) for the group of healthy cardiac 
interbeat interval time series (mean value ±S.D.): 
a= 1.00±0. I 1.20 This result is consistent with previous re­
ports of II! fltlctuations in healthy heart rate (by spectral 
analysis).2l·" The pathologic group shows a significant 
(I' <0.01 by Student's t-test) deviation of the long-range cor­
relation exponent from normal. For the group of heart failure 
subjects, we find that a= 1.24±0.22. Of interest, some of 
the heart failure subjects show an a exponent very close to 
1.5 (Brownian noise), indicating random walk-like fluctua­
tions, also consistent with our previous findings in this 
group. The group-averaged exponent a is less than 1.5 for 
the heart failure patients, suggesting that pathologic dynam­
ics may only transiently operate in the random walk regime 
or may only approach this extreme state as a limiting case. 
We obtained similar results when we divided the time series 
into three consecutive subsets (of - 8 hours each) and re­
peated the above analysis. Therefore our findings are not 
simply attributable to different levels of daily activities (see 
Fig. 3). 

2 
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FIG. 3. Plot of log F(n) vs log n of 3 data subsets (each contains approxi~ 
mately 8 hours of data) from the same subject. The resulting plots were 
shifted vertically for purpose of display. The a exponents obtained over the 
same, fittirig range (from 16 to 3400 beats) arc very similar: 0.90, 1.05 and 
0.95, respectively. Note that not all three data sets exhibit crossover in 
scaling behavior. 

IV, CROSSOVER PHENOMENA 

Although this asymptotic scaling exponent may serve as 
a useful index for selected diagnostic purposes, a drawback 
is that very long data sets are required (at least 24 hours) for 
statistically robust results. For practical purposes, clinical in­
vestigators are usually interested in the possibility of using 
substantially shorter time series. In this regard, we note that 
for short time scales, there is an apparent crossover exhibited 
for the scaling behavior of both data sets (arrows in Fig. 2). 
For the healthy subject. the a exponent estimated from very 
small n « 10 beats) is larger than that calculated from large 
n (> 10 beats). This is probably due to the fact that on very 
short time scales (a few beats to ten beats), the physiologic 
interbeat interval fluctuation is dominated by the relatively 
smooth heartbeat oscillation associated with respiration, thus 
giving rise to a large a value. For longer scales, the interbeat 
fluctuation, reflecting the intrinsic dynamics of a complex 
system, approaches that of II! behavior as previously noted. 
In contrast, the pathologic data set shows a very different 
crossover pattern (Fig, 2), For very short time scales, the 
fluctuation is quite random (close to white noise, a=0.5). As 
the time scale becomes larger, the fluctuation becomes 
smoother (asymptotically approaching Brownian noise, 
a= 1.5). These findings are consistent with our previous re­
port of altered correlation properties under pathologic 
conditions3

•
4 At present it is unclear why we observe such 

alteration. Nevertheless. a good quantitative description can 
probably advance our understanding. 

V_ STOCHASTIC MODEL FOR PATHOLOGIC DATA 

The physiologic mechanism for the long-range correla­
tions represented by the II! spectrum of normal interbeat 
intervals remains to be established. Both stochastic and de-

CHAOS, Vol. 5, No.1, 1995 
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terministic models have been proposed to account for such 
scale-invariant behavior in physical systems. We introduce a 
simple three-parameter stochastic model (without relating to 
actual neuroautonomic control mechanisms) that can quanti­
tatively describe the crossover scaling behavior under ex­
treme pathologic conditions. The simple stochastic model is 
based on two assumptions: 

(i) For short time scales (less than 10-20 beats) the 
cardiac interbeat intervals with congestive heart failure can 
be described as white noise. Consider that the sinus node 
tends to maintain a constant ("homeostatic") firing rate. 
However, the actual beat-to-beat time intervals will deviate 
from a perfectly regular oscillation due to random fluctua­
tions described by a distribution with a zero mean value and 
a well-defined variance (Ll.2

). The typical period (the charac­
teristic time) that the sinus node keeps its firing rate constant 
is denoted by T. 

(ii) The system responds to other driving forces (envi­
ronmental influences or intrinsic factors) by increasing or 
decreasing the firing rate. The typical change of the firing 
rate is characterized by a parameter. o. Once the sinus node 
adjusts its firing rate, it will tend to maintain it for a period of 
T beats as described in (i). 

Figure 4 shows the comparison of the actual interbeat 
data for one of the heart failure subjects to that generated by 
the model. The effect of assumption (i) is to generate white 
noise for time-scale less than T; i.e.) if we let T--}OO then the 
DFA plot of this model will be a straight line with slope 
0.5 for ail ranges of n. On the other hand, the effect of (ii) is 
to create the kind of noise associated with Brownian motion 
("brown noise"), i.e., if we set T very small (- I beat) then 
the DFA plot will be a straight line with slope 1.5. In order to 
simulate the observed crossover between these two regimes, 
we need to set T in the model to be of the same order as the 
crossover time observed in Fig. 4( c). Beside the parameter 
T, we only need to select the other two parameters, Ll. 2 and 
8, to fit the observed data. 

The simple model described above is useful because it 
shows how two apparently different pathologic scaling 
mechanisms are in fact connected by the emergence of a 
characteristic time, corresponding to the observed "cross­
over" behavior of the real data. However, this model is lim­
ited in its scope because it (i) does not account for the lIf 
(a= I) scaling behavior of the healthy heart rate dynamics, 
and (ii) it does not relate the parameters to specific neuroau­
tonomic control mechanisms. We note that this model im­
plies that under extreme pathologic conditions, the system 
attempts to maintain a constant interbeat interval for short 
time scales while responding to other factors over longer 
time scales by a smooth variation of the interbeat interval. 
This behavior is dramatically different from the observed 
dynamics of interbeat interval under normal (healthy) condi­
tion which shows a more complex pattern of sinus rhythm 
fluctuations than can be accounted for with traditional ho­
meostasis models?3 

VI. CliNICAL APPliCATION: PREliMINARY RESULTS 

The above observation of a differential crossover pattern 
for healthy versus pathologic data motivated us to extract 

0.9 

:.2 08 " . 
0.7 

0.6
0 2000 4000 6000 8000 10000 

1.0 ,-~~--~--~--~--, 

0.9 

208 " . 
0.7 

·2 

2000 4000 6000 
Beat number, j 

(c) 
t:. Actual data: congestive heart failure 

- Modal 

8000 

·3 _'--~~~----,:"-~-::-~--'. 
o 2 3 4 

log10 n 

10000 

FIG. 4. (a) Interbeat interval time series from a patient with heart failure 
(the same subject described in Fig. 2). (b) Time series generated by model. 
Only part of the total time series is shown here. (c) The DFA of the interbeat 
interval function B(i) for data in (a) and (b). The triangles represent actual 
data from the subject and the solid lines are generated by the model. The 
actual simulation of the model is carried out as follows: (i) Choose a firing 
rate, R I, such that B( 1) equal to the average value, 8, of the real interbeat 
data set. (ii) The subsequent interbeat values will be B( 1) plus a random 
fluctuation (described by a distribution with zero mean and a finite variance, 
b,2). (iii) With a probability liT, the firing rate RI will Change to a new 
value R2 =R 1+ g. The magnitude of this drift, g, is random and described 
by a distribution with zero mean and standard deviation o. For this simula~ 
tion, the value of the parameters are: '1'= 20 beats, A. = 0.0 11 sand 
0=0.008 s. The parameter T is chosen to fit the crossover time, where b, and 
o are chosen for fitting the data over short and long time scales, respectively. 
To account for the physiological constraint that the firing rate cannot be~ 
come arbitrarily large or small, we also add a instantaneous restoring force 
that is proportional to the difference between the current firing rate and the 
mean (average) firing rate (measured from the actual data). This restoring 
force only affects very long time scales (~104 ) fluctuations. 

two parameters from each data set by fitting the scaling ex­
ponent a over two different time scales: one short, the other 
long. To be more precise, for each data set we calculated an 
exponent a, by making a least squares fit of log F(n) vs 
log n for 4';;n';; 16. Similarly, an exponent a2 was obtained 
from 16~n~64. Since these two exponents are not extracted 
from the asymptotic region, relatively short data sets are suf­
ticient, thereby making this technique applicable to "real 
world" clinical data. 

We applied this quantitative fluctuation analysis to the 
two different groups of subjects mentioned above to measure 
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FIG. 5. Scatter plot of scaling exponents aj vs a2 fer the healthy subjects 
(0) and subjects with congestive heart failure (.6). The a's were calculated 
from interbeat interval data sets of length 8192 beats. Longer data set 
records were divided into multiple data sets (each with 8192 beats). Note 
good separation between healthy and heart disease subjects, with clustering 
of points in twO distinct "clouds." 

the two scaling exponents al and a'2' The two exponents 
were calculated for each data set of length N=8192 beats 
(- 2 hours) and longer data set records were divided into 
multiple subsets (each with 8192 beats). For healthy sub­
jects, we find the following exponents (mean value :<:: S.D.) 
for the cardiac interbeat interval time series: 
"1 = 1.201:<::0.178 and "2=0.998:<::0.124. For the group of 
congestive heart failure subjects, we find that 
"1 =0.803:<::0.259 and "2= 1.125:<::0.216, both significantly 
(p<O.OOOI for both "1 and "2) different from normal. Fur­
thermore, we show in Fig. 5 that fairly good discrimination 
between these two groups can be achieved by using these 
two scaling exponents. We note that not all subjects in our 
preliminary study show an obvious crossover in their scaling 
behavior. Only 8 out of 12 healthy subjects exhibited this 
crossover, while 11 out of 15 pathologic subjects exhibited a 
"reverse" crossover. However, the two scaling exponents 
(" 1 and "2) measured from relatively short data sets can still 
be potentially useful indicators to distinguish normal from 
pathologic time series.24 

To test the effect of data length on these calculations, we 
repeated the same DFA measurements for longer data sets 
(N= 16384) and also for shorter data sets (N=4096). As 
expected, the results for shorter data sets are less reliable 
(more overlap between two groups) due to anticipated statis­
tical error related to finite sample size.25 On the other hand, 
longer data sets result in little improvement for the distinc­
tion between groups. Therefore, the data length of 8192 
seems to be a statistically reasonable choice.26 

Furthermore, we note that data from normal interbeat 
interval time series are tightly clustered suggesting that there 
may exist a "universal" scaling behavior for physiologic in­
terbeat time series. In contrast, the pathologic data show 
more variation, a finding which may be related to different 

clinical conditions and varying severity of the pathologic 
states . 

VII. CONCLUSION 

In summary, we apply a new fiuctuation analysis (modi­
fied from classical random walk analysis) to the nonstation­
ary heartbeat time series from healthy subjects and those 
with severe heart disease (congestive heart failure). We show 
that this method is capable of identifying crossover behavior 
due to differences in scaling over short versus long time 
scales. This finding is of interest from a physiologic view­
point since it motivates new modeling approaches to account 
for the control mechanisms regulating cardiac dynamics on 
different time scales. From a practical point of view, quanti­
fication of these scaling exponents may have potential appli­
cations for bedside and ambulatory monitoring. 
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